Dynamic Response to Variable-magnitude Moving Distributed Masses of Bernoulli-Euler Beam Resting on Bi-parametric Elastic Foundation
نویسندگان
چکیده
منابع مشابه
Dynamic Response of Multi-cracked Beams Resting on Elastic Foundation
Cracks cause to change dynamic response of beams and make discontinuity in slope of the deflection of the beams. The dynamic analysis of the Euler-Bernoulli cracked beam on the elastic foundation subjected to the concentrated load is presented in this paper. The stiffness of the elastic foundation and elastic supports influence on vibrational characteristics of the cracked beam. The Dynamic Gre...
متن کاملNonlinear Vibration Analysis of an Euler-Bernoulli Beam Resting on a Nonlinear Elastic Foundation under Compressive Axial Force
This paper studies the nonlinear vibration analysis of a simply supported Euler-Bernoulli beam resting on a nonlinear elastic foundation under compressive axial load using nonlinear normal modes concept in the case of three-to-one (3:1) internal resonance. The beam’s governing nonlinear PDE of motion and also its boundary conditions are derived and then solved using the method of Multiple Time ...
متن کاملDynamic Analysis of Axially Beam on Visco - Elastic Foundation with Elastic Supports under Moving Load
For dynamic analyses of railway track structures, the algorithm of solution is very important. For estimating the important problems in the railway tracks such as the effects of rail joints, rail supports, rail modeling in the nearness of bridge and other problems, the models of the axially beam model on the elastic foundation can be utilized. For studying the effects of axially beam on the ela...
متن کاملStability Analysis of Non-Local Euler-Bernoulli Beam with Exponentially Varying Cross-Section Resting on Winkler-Pasternak Foundation
In this paper, linear stability analysis of non-prismatic beam resting on uniform Winkler-Pasternak elastic foundation is carried out based on Eringen's non-local elasticity theory. In the context of small displacement, the governing differential equation and the related boundary conditions are obtained via the energy principle. It is also assumed that the width of rectangle cross-section varie...
متن کاملBending Response of Nanobeams Resting on Elastic Foundation
In the present study, the finite element method is developed for the static analysis of nano-beams under the Winkler foundation and the uniform load. The small scale effect along with Eringen's nonlocal elasticity theory is taken into account. The governing equations are derived based on the minimum potential energy principle. Galerkin weighted residual method is used to obtain the finite eleme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Asian Research Journal of Mathematics
سال: 2017
ISSN: 2456-477X
DOI: 10.9734/arjom/2017/33122